Restoring Retinoic Acid Attenuates Intestinal Inflammation and Tumorigenesis in APCMin/+ Mice.
نویسندگان
چکیده
Chronic intestinal inflammation accompanies familial adenomatous polyposis (FAP) and is a major risk factor for colorectal cancer in patients with this disease, but the cause of such inflammation is unknown. Because retinoic acid (RA) plays a critical role in maintaining immune homeostasis in the intestine, we hypothesized that altered RA metabolism contributes to inflammation and tumorigenesis in FAP. To assess this hypothesis, we analyzed RA metabolism in the intestines of patients with FAP as well as APCMin/+ mice, a model that recapitulates FAP in most respects. We also investigated the impact of intestinal RA repletion and depletion on tumorigenesis and inflammation in APCMin/+ mice. Tumors from both FAP patients and APCMin/+ mice displayed striking alterations in RA metabolism that resulted in reduced intestinal RA. APCMin/+ mice placed on a vitamin A-deficient diet exhibited further reductions in intestinal RA with concomitant increases in inflammation and tumor burden. Conversely, restoration of RA by pharmacologic blockade of the RA-catabolizing enzyme CYP26A1 attenuated inflammation and diminished tumor burden. To investigate the effect of RA deficiency on the gut immune system, we studied lamina propria dendritic cells (LPDC) because these cells play a central role in promoting tolerance. APCMin/+ LPDCs preferentially induced Th17 cells, but reverted to inducing Tregs following restoration of intestinal RA in vivo or direct treatment of LPDCs with RA in vitro These findings demonstrate the importance of intestinal RA deficiency in tumorigenesis and suggest that pharmacologic repletion of RA could reduce tumorigenesis in FAP patients. Cancer Immunol Res; 4(11); 917-26. ©2016 AACR.
منابع مشابه
Dclk1 facilitates intestinal tumor growth via enhancing pluripotency and epithelial mesenchymal transition
Doublecortin-like kinase 1 (Dclk1) is overexpressed in many cancers including colorectal cancer (CRC) andit specifically marks intestinal tumor stem cells. However, the role of Dclk1 in intestinal tumorigenesis in Apc mutant conditions is still poorly understood. We demonstrate that Dclk1 expression and Dclk1+ cells are significantly increased in the intestinal epithelium of elderly ApcMin/+ mi...
متن کاملLack of interferon-γ receptor results in a microenvironment favorable for intestinal tumorigenesis
IFN-γ plays an important role in innate and adaptive immunity. IFN-γ signaling is also involved in tumorigenesis, with both pro- and antitumor activities documented. We here report the characterization of intestinal tumorigenesis in ApcMin/+ mice that lack IFN-γ receptor. We observed that Ifngr1-/-ApcMin/+ mice are shorter-lived than Ifngr1+/+ApcMin/+ mice. The tumors in Ifngr1-/-ApcMin/+ mice ...
متن کاملReduced Intestinal Tumorigenesis in APCmin Mice Lacking Melanin-Concentrating Hormone
BACKGROUND Melanin-concentrating hormone (MCH) is an evolutionary conserved hypothalamic neuropeptide that in mammals primarily regulates appetite and energy balance. We have recently identified a novel role for MCH in intestinal inflammation by demonstrating attenuated experimental colitis in MCH deficient mice or wild type mice treated with an anti-MCH antibody. Therefore, targeting MCH has b...
متن کاملCCR6, the Sole Receptor for the Chemokine CCL20, Promotes Spontaneous Intestinal Tumorigenesis
Interactions between the inflammatory chemokine CCL20 and its receptor CCR6 have been associated with colorectal cancer growth and metastasis, however, a causal role for CCL20 signaling through CCR6 in promoting intestinal carcinogenesis has not been demonstrated in vivo. In this study, we aimed to determine the role of CCL20-CCR6 interactions in spontaneous intestinal tumorigenesis. CCR6-defic...
متن کاملLiver receptor homolog 1 contributes to intestinal tumor formation through effects on cell cycle and inflammation.
Liver receptor homolog 1 (LRH-1) is an orphan nuclear receptor that synergizes with beta-catenin/T cell factor 4 signaling to stimulate intestinal crypt cell renewal. We evaluated here the impact of haploinsufficiency of LRH-1 on intestinal tumorigenesis by using two independent mouse models of human colon tumorigenesis. Haploinsufficiency of LRH-1 blunts intestinal tumorigenesis in the ApcMin/...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer immunology research
دوره 4 11 شماره
صفحات -
تاریخ انتشار 2016